Acta Crystallographica Section E

Structure Reports

Online

4-(4-Chlorophenyl)-5-(4-methylphenyl)-3-(2-pyridyl)-4H-1,2,4-triazole

ISSN 1600-5368

Shu-Ping Zhang, Zhao-Di Liu and Si-Chang Shao*

Department of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China

Correspondence e-mail: shaosic@fync.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.040$
$w R$ factor $=0.116$
Data-to-parameter ratio $=15.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the title compound, $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClN}_{4}$, the two benzene rings form dihedral angles of 30.95 (9) and $70.69(6)^{\circ}$ with the triazole ring, and the dihedral angle between the triazole and the pyridine rings is $43.38(8)^{\circ}$. Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds are observed in the crystal structure.

Comment

1,2,4-Triazole and its derivatives constitute a promising class of ligands that are widely used in the synthesis of various complexes (Haasnoot, 2000). Recently, we have reported the crystal structures of 1,2,4-triazole ligands and their metal complexes (Zhang et al., 2004; Zhang, Liu, Ma et al., 2005; Zhang, Liu, Yang et al., 2005). As an extension of our work on the structural characterization of triazole derivatives, we report here the crystal structure of the title compound, (I).

(I)

In (I), the pyridine and benzene rings lie in a propeller arrangement around the central 1,2,4-triazole ring (Fig. 1), thereby minimizing steric effects among these rings. The dihedral angles between the pyridine ring and the two benzene rings (C8-C13 and C15-C20) are 19.39 (8) and $87.81(6)^{\circ}$, respectively. These two benzene rings form dihedral angles of $30.95(9)$ and $70.69(6)^{\circ}$, respectively, with the triazole ring, and the dihedral angle between the triazole ring and the pyridine ring is $43.38(8)^{\circ}$. The crystal packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 1).

Experimental

The title compound was synthesized according to a literature method (Zhu et al., 2000). Equivalent amounts of p-methylphosphazoanilide and N-pyridyl- N^{\prime} - p-methylphenylhydrazine were reacted in ethanol $(10 \mathrm{ml})$ for 1 h . After allowing the resulting solution to stand in air for 15 d , colourless block-shaped crystals were formed on slow evaporation of the solvent. The crystals were isolated, washed with ethanol and dried. Analysis found: C 69.226, H 4.34, N 16.18\%; calculated for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClN}_{4}$: C 69.26, H 4.36, N 16.15%.
\qquad

organic papers

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClN}_{4}$
$M_{r}=346.81$
Monoclinic, $P 2_{1} / c$
$a=18.905(4) \AA$
$b=8.4111(16) \AA$
$c=11.419(2) \AA$
$\beta=105.276(3)^{\circ}$
$V=1751.5(6) \AA^{3}$
$Z=4$

Data collection
Bruker SMART CCD area-detector
\quad diffractometer
φ and ω scans
Absorption correction: multi-scan
\quad (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.956, T_{\text {max }}=0.970$
20226 measured reflections

$D_{x}=1.315 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 3824 reflections
$\theta=2.6-28.3^{\circ}$
$\mu=0.23 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colourless
$0.20 \times 0.19 \times 0.14 \mathrm{~mm}$

4316 independent reflections 3093 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-24 \rightarrow 24$
$k=-11 \rightarrow 10$
$l=-15 \rightarrow 14$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.116$
$S=1.09$
4316 reflections
275 parameters

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.05 P)^{2}\right. \\
& \quad+0.2731 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.011 \\
& \Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.23 \text { e } \AA^{-3}
\end{aligned}
$$

H atoms treated by a mixture of independent and constrained refinement

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C17-H17 $\cdots \mathrm{N} 2^{\mathrm{i}}$	$0.984(17)$	$2.452(17)$	$3.342(2)$	$150.3(14)$
C20-H20 $\cdots \mathrm{N} 1^{\text {ii }}$	$0.954(17)$	$2.554(17)$	$3.320(2)$	$137.4(14)$

Symmetry codes: (i) $x, y+1, z$; (ii) $x,-y+\frac{3}{2}, z+\frac{1}{2}$.
The methyl H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=$ $0.96 \AA$) and constrained to ride on their parent atom, with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$. The remaining H atoms were located in a difference map and refined freely.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve

Figure 1
The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of Anhui Provincial University College (grant No. 2005 K J137).

References

Haasnoot, J. G. (2000). Coord. Chem. Rev. 200-202, 131-138.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version. 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Zhang, S.-P., Liu, H.-J., Shao, S.-C., Zhang, Y., Shun, D.-G., Yang, S. \& Zhu, H.-L. (2004). Acta Cryst. E60, o1113-o1114.

Zhang, S.-P., Liu, Z.-D., Ma J.-L., Yang, S. \& Shao, S.-C. (2005). Acta Cryst. E61, m423-m424.
Zhang, S.-P., Liu, Z.-D., Yang, S., Qiu, X.-Y. \& Shao, S.-C. (2005). Acta Cryst. E61, o3108-o3109.
Zhu, D., Zhu, X., Xu, L., Shao, S., Shanmuga Sundara Raj, S., Fun, H.-K. \& You, X. (2000). J. Chem. Crystallogr. 30, 429-430.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

